
9. Using Excel matrices functions to calculate partial autocorrelations 

 

In order to use a more elegant way to calculate the partial autocorrelations we need to borrow 

some equations from stochastic modelling, as well as to dive into the matrix algebra.  

 

Autocorrelations and partial autocorrelations are also used to define certain stochastic processes, 

and one of them is called autoregressive process (introduced in Chapter 11). For certain 

stochastic processes, the autocorrelation function satisfies the following equation: 

 

𝜌1 = 𝜙𝑘1𝜌𝑗−1 + ⋯+ 𝜙𝑘(𝑘−1)𝜌𝑗−𝑘+1 + 𝜙𝑘𝑘𝜌𝑗−𝑘    (9.1) 

 

In equation (9.1), 𝑗  are the autocorrelation coefficients that depend on some lagged value of the 

coefficients 𝑗−𝑘, as well as on 𝑘𝑘, which are the partial autocorrelation coefficients.  

 

    Using the matrix notation, equation (9.1) can be represented as: 
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    (9.2) 

 

The alternative expression for (9.2) is: 

 

𝛒k = 𝐏k𝛟k       (9.3) 

 

This means that: 

𝛟k =
𝛒k

𝐏k
= 𝐏k

−1𝛒k      (9.4) 

 

In other words, the matrix that contains the partial autocorrelation coefficients can be calculated 

from the inverse matrix of all the lagged autocorrelation coefficients multiplied by the vector that 

contains all the autocorrelations. 

 

It sounds very complicated, but in terms of Excel functions this means that in order to calculate 

the partial autocorrelations, we need only two functions, =MMULT() and =MINVERSE(). The 

first function is used to multiply two matrices and the second one returns an inverse of the 

matrix, which is exactly what we need, as per equation (9.4). 

 

There is an option to use another method to calculate the partial autocorrelation coefficients by 

using the determinants of the matrices via the Excel =MDETERM() function. However, this 

would not be any more elegant than via the =MMULT() and =MINVERSE() function.   

 



The vector k in the equation (9.4) shows that we first need to create a table with all the 

calculated autocorrelation coefficients. Fig. 9.1 shows just the first nine, although the full 
spreadsheet contains all twenty.   

                    

 
                                                 Fig. 9.1 Autocorrelation coefficient matrix 

  

Once this matrix has been created, we can start using the matrix functions in Excel that will 

enable us to calculate the partial autocorrelations. Fig. 9.2 shows the final result. The orange 

coloured cells are the full partial autocorrelation coefficients 𝑘𝑘, and the cells vertically above 

these coloured cells are the partial autocorrelation coefficients 𝑘𝑗 , that are necessary for 

calculation (see a yellow box example after equation (8.3) for details). 

                          

 
                         Fig. 9.2 Partial autocorrelation coefficients for DJI time series 

 

The cells are calculated as: 

 

PACF for lag 1,1     Cell B23          Value (same as the first autocorrelation coefficient) 

PACF for lag 2,1     Cells C23:C24 {=MMULT(MINVERSE($A$1:B2),$A$2:$A3)} 

PACF for lag 2,2     Cells D23:D25 {=MMULT(MINVERSE($A$1:C3),$A$2:$A4)} 

PACF for lag 3,3     Cells E23:E26  {=MMULT(MINVERSE($A$1:D4),$A$2:$A5)} 

 

Compare the values in coloured cells in Fig. 9.2 (B23, C24, D25, E26, etc.) with the ones in 

column C (C3:C11) in Fig. 8.2 and you will see that they are identical. 

 

Fig. 9.3 shows how the above formula has been implemented. 

 



 
                Fig. 9.3 Calculations for partial autocorrelation coefficients for DJI time series 

 

The curly bracket in the formula {=MMULT(MINVERSE($A$1:B2),$A$2:$A3)} are not 

entered manually. This is an array formula that is entered by clicking SHIFT, CTRL and ENTER 

at the same time after the formula has been entered into the formula bar. The curly brackets are 

added automatically by Excel.  

 

To execute this formula, we need to follow these steps: 

 

1. We first highlight the cells where the results will be displayed (see in Fig 9.2 an 

example of the range F23:F27) 

2. While the cells are highlighted, go to the formula bar and enter the formula: 

=MMULT(MINVERSE($A$1:E5),$A$2:$A6). Do not press ENTER! 

3. Press SHIFT, CTRL and ENTER together 

4. The values get populated in the range F23:F27 in Fig. 9.2 

 

In our formula above, the first part represents the inverse of the cells A1:E5 (which is equivalent 

to 𝑃𝑘
−1 in equation 9.4) and A2:A6 is the vector (equivalent to 𝜌𝑘 in equation (9.4)). Fig 9.4 

illustrates the ranges that the formula covers. 

 

              
   Fig. 9.4 How matrix functions are used to calculate the partial autocorrelation coefficients 

 

It might appear complicated to start with, but this is a reasonably simple way to calculate the 

partial autocorrelations in Excel. The value of this method is that it actually shows you what is 

happening. However, we can automate this even more and bring the calculations of the partial 

autocorrelation coefficients to a single formula. 

 

Fig. 9.5 below is identical to Fig. 9.1, except that we added three new columns. Column S 

contains just sequential numbers, representing the lags for the partial autocorrelation coefficients. 

Columns T and V have identical values, and they are the partial autocorrelation coefficients, but 

calculated using a single formula in two different ways. Let’s explain. 



 

 
Fig. 9.1 Calculating the partial autocorrelations (PACF) with a single Excel formula 

 

Excel formula for inverse matrix, as we just learned, is: =MINVERSE(array). The red font refers 

to an array that represents the original matrix from which an inverse matrix will be created. So, if 

we say =MINVERSE($A$1:C3), this means that the original matrix is in cells A1:C3. 

 

Excel formula for multiplying two matrices, as we also learned, is: =MMULT(array1, array2). 

The red and green are the two matrices that will be multiplied. So, if we say 

=MMULT(MINVERSE($A$1:C3),$A$2:$A4), we are multiplying an inverse of the square 

matrix ($A$1:C3) with a single column matrix ($A$2:$A4). As we know the result will be a 

single column matrix. 

 

And finally, we’ll also use Excel formula for index: =INDEX(aray, row_num, [column_num]), or 

the other form, which is: =INDEX(reference, row_num, [column_num], [area_num]). The 

segments in square brackets are optional. Let’s break down this formula using an example. 

 

If, for example, we say =INDEX(A5:C10,3,2), the first part A5:C10 is an array from which we 

are going to extract the value. To extract the value, we find the intersection between the third 

row in this area and the second column. The result is the value that is in cell C8. Why? The first 

cell in this example array is A5, so we go 3 rows down (which is to row 8). Again, we start with 

A5 and go two columns to the right, which is the column C. So, the intersection between row 8 

and column C is the cell C8. Therefore, in response to the function =INDEX(), Excel returns the 

value from this cell. 

 

We can combine all the previous formulas into one single formula that will give us the partial 

autocorrelation coefficients. For example: 

=INDEX(MMULT(MINVERSE($A$1:C3),$A$2:$A4),COUNT($A$2:$A4)).  

 

What we are doing here is exactly what we did before (see Fig. 5.6.4), which is: multiplying the 

matrix A2:A4 with the inverse matrix of A1:C3. The =INDEX() function is saying that from the 

result of this multiplication (which will be a column of numbers), we want just the last value in 

the column. The part that says COUNT($A$2:$A4) gives us this. It counts how many elements 

are in this column and only the last one is displayed. 

 

To see how this was applied, look at the formulae in column T. You can see the following: 



 

T1=INDEX(MMULT(MINVERSE($A$1:A1),$A$2:$A2),COUNT($A$2:$A2)) 

T2=INDEX(MMULT(MINVERSE($A$1:B2),$A$2:$A3),COUNT($A$2:$A3)) 

T3=INDEX(MMULT(MINVERSE($A$1:C3),$A$2:$A4),COUNT($A$2:$A4)) 

. 

. 

T17 =INDEX(MMULT(MINVERSE($A$1:Q17),$A$2:$A18),COUNT($A$2:$A18)) 

 

So, column T gives us the partial autocorrelation coefficients. This is exactly the same set of 

formulae that we used in our previous example that helped us create the partial autocorrelation 

coefficients in the range B23:R39 (Fig. 5.6.2). The only difference is that we do not see all the 

intermediate coefficients rk,j, but only the final ones rk,k, which is what we want. The only 

problem with the formulae here are the red marked parts. If you copy the formula down, it will 

copy everything correctly, except the red parts. You will need to manually change A1, to B2, to 

C3, etc. 

 

A solution to this problem is to make the matrices relative, rather than use the explicit ranges. To 

do this, we need Excel formula =OFFSET(reference, rows, cols, [height], [width]). The last two 

elements in square brackets are optional. Let’s use an example to explain this function. 

 

If we say =OFFSET(D3,3,-2,1,1), this means that the starting point is the cell D3, which is the 

reference cell. From there, we go three rows down (which is to row 6) and then move 2 columns 

to the left (which is to column B). The result is B6. In response to the function =OFFSET(), 

Excel returns the value from this cell.  

 

We can now use this format to create a one single formula as follow: 

=INDEX(MMULT(MINVERSE(OFFSET($A$1,0,0,S3,S3)),OFFSET($A$1,1,0,S3,1)),S3).  

 

What we are saying is that we first multiply the matrix that is defined by the OFFSET function as 

($A$1,1,0,S3,1), which is the same as ($A$2:$A4), with an inverse matrix in ($A$1,0,0,S3,S3), 

which is the same as $A$1:C3. The result will be a column of numbers, but we want the last one 

which is actually the last value in column S, so in our case the value from cell S3. Instead of S3 

in the above formula, we could have used COUNT($A$2:$A4). Either way it gives us the same 

number for the number of lags. 

 

To see how this was applied, look at the formulae in column V. You can see the following: 

 

V1=INDEX(MMULT(MINVERSE(OFFSET($A$1,0,0,S1,S1)),OFFSET($A$1,1,0,S1,1)),S1) 

V2=INDEX(MMULT(MINVERSE(OFFSET($A$1,0,0,S2,S2)),OFFSET($A$1,1,0,S2,1)),S2) 

V3=INDEX(MMULT(MINVERSE(OFFSET($A$1,0,0,S3,S3)),OFFSET($A$1,1,0,S3,1)),S3) 

. 

. 

V17=INDEX(MMULT(MINVERSE(OFFSET($A$1,0,0,S17,S17)),OFFSET($A$1,1,0,S17,1)),

S17) 

 



Now it is clear that if you copied cell V1 down, there will be no need for manual corrections. 

This is now fully automated formula for calculating the partial autocorrelation coefficients with a 

single line and a Copy/Paste action. 
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14. Fitting the model 

 

Now we obtained preliminary estimates of the model coefficients, we can fit it to the actual 

data. 

 

Fitting and forecasting can be quite confusing and in order to be explicit, we are summarising 

a selection of the most basic formulae used for various Box-Jenkins models. It is very 

important to remember that these formulae imply the following relationships: 

 

For d=0: yt = yt – μ, and as zt = yt and μ = ȳ, this means that zt = yt - ȳ 

For d=1: zt = yt – yt-1 

For d=2: zt = 2zt = zt – zt-1 = yt – yt-1 - yt-1 – yt-2 = yt – 2yt-1+ yt-2 

For d=3: zt = 3zt = 2zt -
2zt-1 = yt – 3yt-1+ 3yt-2 – yt-3, etc. 

 

Also remember that: 𝑦̂t(1) = 𝑦̂t+1. In other words, the forecast for just one period ahead at 
the time t, is in fact an estimated value of that one period ahead. 

 

To decide if the constant  is needed, and what is the value of the constant, Table 14.1 below 

is put together to help us with the decision-making process. 

 

    AR only     MA only 

Stationary (d=0) 

 Zero mean   not needed      not needed 

 Non-zero mean )(1δ 1t  y for AR(1)    y  

)(1δ 21t   y for AR(2)  y    

    )(1δ 321t   y for AR(3), etc. y   

Nonstationary (d≥1)   not needed      not needed 

Table 14.1 Decision criteria for the inclusion of  in the model 
 

And finally, remember that: 

𝑎𝑡 = 𝑦𝑡 − 𝑦̂𝑡−1(1), or 𝑎𝑡 = 𝑦𝑡 − 𝑦̂𝑡  

 

𝑎𝑡−1 = 𝑦𝑡−1 − 𝑦̂𝑡−2(1), or 𝑎𝑡−1 = 𝑦𝑡−1 − 𝑦̂𝑡−1 , etc. 
 

Earlier we gave example of several AR(p), MA(q) and ARMA(p,q) models. To refresh your 

memory, here they are again: 

    
AR(1)   zt = ϕ1zt−1 + at         

AR(2)  zt = ϕ1zt−1 + ϕ2zt−2 + at        

AR(3)  zt = ϕ1zt−1 + ϕ2zt−2 + ϕ3zt−3 + at  etc.      

    
MA(1)  zt = −θ1at−1 + at         

MA(2)  zt = −θ1at−1 − θ2at−2 + at        

MA(3)  zt = −θ1at−1 − θ2at−2 − θ3at−3 + at  etc.     

 

ARMA(1,1)  zt = ϕ1zt−1 − θ1at−1 + at        

ARMA(2,2) zt = ϕ1zt−1 + ϕ2zt−2−θ1at−1 − θ2at−2 + at     

ARMA(3,3) zt = ϕ1zt−1 + ϕ2zt−2 + ϕ3zt−3 − θ1at−1 − θ2at−2 − θ3at−3 + at etc.  
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Given the above summary of how zt is created and if  is necessary, the same formulae can be 
expressed in terms of yt: 

 

AR(1)   yt = μ(1 − ϕ1) + ϕ1yt−1 + at       

AR(2)  yt = μ(1 − ϕ1 − ϕ2) + ϕ1yt−1 + ϕ2yt−2 + at     

AR(3)  yt = μ(1 − ϕ1 − ϕ2 − ϕ3) + ϕ1yt−1 + ϕ2yt−2 + ϕ3yt−3 + at  etc.  

    
MA(1)  yt = μ−θ1at−1 + at         

MA(2)  yt = μ−θ1at−1 − θ2at−2 + at       

MA(3)  yt = μ−θ1at−1 − θ2at−2 − θ3at−3 + at  etc.     
 

ARMA(1,1)  yt = μ(1 − ϕ1) + ϕ1yt−1−θ1at−1 + at      

ARMA(2,2) yt = μ(1 − ϕ1 − ϕ2) + ϕ1yt−1 + ϕ2yt−2−θ1at−1 − θ2at−2 + at       

ARMA(3,3) yt = μ(1 − ϕ1 − ϕ2 − ϕ3) + ϕ1yt−1 + ϕ2yt−2 + ϕ3yt−3−θ1at−1 −
                                                  θ2at−2 − θ3at−3 + at etc.         
 

 

On the basis of what we estimated so far, i.e. 1=0.72 and θ1=0.0064, and given the above 

formulae for ARMA(1,1), our model expressed in terms of zt is: 

 

zt = 0.72zt−1 − 0.0064at−1 + at  
 

Armed with this, we can go back to our ARMA(1,1) model from the previous chapter and 

show how to fit the model in terms of zt and yt. As before, we’ll rely on the templates from 

the spreadsheets. The template is shown in Fig. 14.1. This is a copy of the sheet called “5. 

Model” from the workbook. 

 

 
Fig. 14.1 Template for fitting the time series with the estimated model 

 

The template has several coloured boxes to help with the calculations and data interpretation. 

The actual time series is copied from previous sheets to column K, whilst the column L again 

contains the differences of every observation from the overall mean. Columns M and N 
calculate the appropriate AR and MA component, whilst column O is the combination of the 
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two, i.e. one step forecasts, or a fit, for our time series. Column P contains the errors 

generated by fitting the forecasts (model data) to the actual time series. 

 

The blue coloured box A1:C7 contains the most elementary descriptive statistics for the time 

series, including the rule whether to include  in the equation. The green box E1:G4 contains 
a few details of the fitted series (which we will do shortly) and enable a comparison between 

the fitted and actual dataset. The two yellow boxes contain all the details that are related to 

the coefficients. The box E6:H9 contains the preliminary estimated values of the coefficients. 

We can see that cells F9 and G9 contains the values we already estimated for 1, and θ1. The 

other two cells for 2, 3, θ2 and θ3 are empty as we did not have them in our ARMA(1,1) 
model. 

 

It is very important to emphasise that you must insert the right number of parameters in the 

cells F6 and G6 from Fig. 14.1 (in our case 1 and 1). If you do not do this, the forecasts in the 

template will not be executed correctly.  

 

By looking in the cells in columns M and N you will see some IF statements that pick the 

correct forecasting formula depending on what numbers are placed in cells F6 and G6. Also, 

if you are using a different model, the correct formula needs to be created in the cell B4 for . 

For details see Chapter 10, as well as Table 14.1. 

 

As we said above, the values in columns M and N calculate the AR and the MA part of the 

model. The column O, that contains ẑt values, brings it all together by adding the values from 

the cells in M and N, plus the value of the constant  from B6. And finally, the column P 
contains the forecasting errors et. 

 

Our model, expressed in terms of yt is: 

 

yt = 0.51(1 − 0.72) + 0.72yt−1−0.00641at−1 + at = 0.1428+0.72yt−1−0.00641at−1 + at  

 

How well our model fits the actual data, can be seen in Fig. 14.2. 

 
Fig. 14.2 The actual data and the model ARMA(1,1) fit 

 

Before we either enthusiastically embrace the model, or discard it, we need to subject it to 

some diagnostic validation. This will tell us if the model is acceptable at all. In fact, if we 

were unsure and have used several tentative models, during this next stage of diagnostic 

checking we will be in the position to decide which one is the most acceptable. 
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18. Alternative shortcuts to estimation and forecasting 

 

What we described so far covers the “textbook case” of how to estimate the parameters. 

However, if we are just doing some preliminary work and experimenting with data, the 

procedure might appear to be quite lengthy. A quicker method of estimating the model 

coefficients would be desirable. As it happens, using Excel Solver function we might be able 

to achieve this. We created two templates that will enable us go through this phase at greater 

speed and elegance. 

 

The first template (see workbook “BJ Chapter 18A.xlsx”) utilizes the formulae that Box and 

Jenkins suggested to be used for initial estimates of the parameters  and θ. This is all done in 
one simple sheet (see the sheet “2. Estim” in the above workbook). However, what precedes 

this sheet is the sheet containing ACF and PACF calculations (because we need to decide 

what category of models our time series belongs), just as in the previous workbook. The 

sheets that follow are the modelling sheets and the forecasting sheet, as before. We have in 

this case omitted the residual analysis and everything else that, in fact, has to be done to 

validate the model. However, we know that this has to be done. 

 

Fig. 18.1 contains the details of how to calculate the preliminary estimates for  and θ. These 

formulae were already shown in Table 11.1. 

 

 
Fig. 18.1 Calculation of the preliminary estimates for  and θ 

 

Columns A and B contain the values of ACF and PACF, as per previous examples and 

templates. Columns E and F (or to be precise, the cells E2, E5 & E6, F10, F13 & F14 and 

E18 & F18) contain the values of the preliminary estimates of  and θ. Unless there is an 
explicit formula, such as E5 or E6, the estimates were achieved by utilizing the Solver. Let’s 

look at the example for ARMA(1,1) model, where we are trying to estimate E18 and F18 for 

1 and θ1. Fig. 18.2 shows an example how the Solver dialogue box was structured. 

 

As before, we declared D20 to be the objective with the value of zero. We are going to meet 

this objective by changing the cells E18:F18, with the constraints that certain conditions, as 

per cells L18:L19 are met. So far, so good. However, the key to this optimization is in cells 

D18:D20. In fact cells C18:C20 show the Excel formulae describing what is going on in 

D18:D20. They are just translations of the actual formulae that you can also see in the sheet. 

Fundamentally, we are saying that D18 and D19, as well as their sum in D20 need to add to 

zero (this is the Objective in the Solver dialogue box). 
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As D20 turns out to be 4.49398E-07 (Excel speak for 0.000000449398), which is virtually 

zero, the Solver has automatically inserted the values of 1 and θ1 into cells E18 and F18. 

They are 0.63 and -0.37 for 1 and θ1 respectively. Compare this with the values for 1 and θ1 
from Chapter 13, where they were estimated as 0.72 and 0.0064. If you follow the example, 

you will see that the AIC, BIC and MSE are marginally worse than those from Chapter 13. 

Another red flag are the negative serial correlation as per cell F30. The coefficients need 

further tuning. 

 

       
       Fig. 18.2 Solver dialogue box for preliminary estimates of  and θ 

 

The second template (see workbook “BJ Chapter 18B.xlsx”) is taking it to the next level of 

simplicity, where we literary let Solver pick the model. It is a crude approximation, but for 

the purposes of quick execution, it has some value. In order to see how does this template 

work, let’s check Fig. 18.3. 

 

 
Fig. 18.3 Initial template for estimating ARIMA(p,d,q) coefficients  and θ 
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This workbook only contains only two sheets, “1. ACF_PACF” and “2. B_J ARMA“. The 

template looks very similar to all the previous ones, and indeed the majority of the formulae 

have been kept unchanged. The only difference is how we invoke the Solver function. 

 

We will again invoke the Solver function, but before that we just inserted the values of 0.001 

to all cells between F7:G9. Effectively these are our initial seed values for all  and θ 
coefficients up to the model of p=3 and q=3. In our case, because we are using the same time 

series and we know that d=0, so what remain to be estimated are the values for up to 3 and 

θ3. 

 

To start the process, we will invoke the Solver function and the dialogue box is displayed in 

Fig. 18.4. 

      
Fig. 18.4 Solver dialogue box for estimating all  and θ coefficients in an ARMA(p,q) model 
 

As you can see, our Objective is to minimize the AIC value, which is in cell F21. We are 

going to change cells F6:G6 between 1 and 3, each cell. This means that we will take all the 

combinations between 1 to 3 and θ1 to θ3, and seek their values in cells F7:G9, subject to 

constraints as shown. 

 

Once the Solver completed the iterations, the model suggested was ARMA(1,1) with 1 = 
0.80 and θ1 = 0.25. As we can see, it is the same model we selected and the values of the 

parameters are more or less in the same region. However, unlike the model from the previous 

template, this one does not have negatively correlated residuals.  

 

The advantage of both templates is that we can treat these estimated coefficient values as just 

the preliminary estimates, which means we can improve on them. We’ll let you experiment 

with the Excel Solver function to figure out how to do it.  


